DIETHYL SULFATE
The
Chemical Identifier fields
include common identification numbers, the
NFPA diamond
U.S. Department of Transportation hazard labels, and a general
description of the chemical. The information in CAMEO Chemicals comes
from a variety of
data sources.
CAS Number | UN/NA Number |
---|---|
|
|
DOT Hazard Label | USCG CHRIS Code |
|
|
NIOSH Pocket Guide | International Chem Safety Card |
none |
NFPA 704
Diamond | Hazard | Value | Description | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Health | 3 | Can cause serious or permanent injury. | |||||||||
Flammability | 1 | Must be preheated before ignition can occur. | ||||||||||
Instability | 1 | Normally stable but can become unstable at elevated temperatures and pressures. | ||||||||||
Special |
(NFPA, 2010)
General Description
A clear colorless liquid with a peppermint odor. Burns, though may be difficult to ignite. Corrosive to metals and tissue. It is a potent alkylating agent. Flash point is 104°C (219°F) [Aldrich MSDS].
The
Hazard fields
include
special hazard alerts
air and water
reactions, fire hazards, health hazards, a reactivity profile, and
details about
reactive groups assignments
and
potentially incompatible absorbents.
The information in CAMEO Chemicals comes from a variety of
data sources.
Reactivity Alerts
- Water-Reactive
Air & Water Reactions
Combustible. Slowly reacts with water to form ethyl alcohol, a flammable liquid, and ethyl sulfate, with eventual conversion to sulfuric acid.
Fire Hazard
Special Hazards of Combustion Products: Highly toxic fumes contaning sulfur oxides may be generated along with thermal decomposition products such as ethyl ether and ethylene. Sulfuric acid may be produced in the presence of moisture.
Behavior in Fire: It burns to yield highly, toxic sulfur oxides. Above 100°C, it undergoes thermal decomposition to yield ethyl ether, ethylene and sulfur oxides which may cause an explosion in closed containers or confined spaces. (USCG, 1999)
Behavior in Fire: It burns to yield highly, toxic sulfur oxides. Above 100°C, it undergoes thermal decomposition to yield ethyl ether, ethylene and sulfur oxides which may cause an explosion in closed containers or confined spaces. (USCG, 1999)
Health Hazard
May be fatal if inhaled, swallowed or absorbed through skin. Inhalation causes nausea and vomiting. Causes burns to skin and eyes. Ingestion may cause nausea, vomiting abdominal pain and collapse. (USCG, 1999)
Reactivity Profile
The presence of moisture in a metal container of DIETHYL SULFATE caused the formation of sulfuric acid which reacts with the metal to release hydrogen which pressurized and exploded the container [Chem. Abst. 28:2908(1934)].
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents
No information available.
The
Response Recommendation fields
include isolation and evacuation distances, as well as recommendations for
firefighting, non-fire response, protective clothing, and first aid. The
information in CAMEO Chemicals comes from a variety of
data sources.
Isolation and Evacuation
Excerpt from ERG Guide 152 [Substances - Toxic (Combustible)]:
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.
SPILL: Increase the immediate precautionary measure distance, in the downwind direction, as necessary.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.
SPILL: Increase the immediate precautionary measure distance, in the downwind direction, as necessary.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
Firefighting
Excerpt from ERG Guide 152 [Substances - Toxic (Combustible)]:
SMALL FIRE: Dry chemical, CO2 or water spray.
LARGE FIRE: Water spray, fog or regular foam. If it can be done safely, move undamaged containers away from the area around the fire. Dike runoff from fire control for later disposal. Avoid aiming straight or solid streams directly onto the product.
FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
SMALL FIRE: Dry chemical, CO2 or water spray.
LARGE FIRE: Water spray, fog or regular foam. If it can be done safely, move undamaged containers away from the area around the fire. Dike runoff from fire control for later disposal. Avoid aiming straight or solid streams directly onto the product.
FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
Non-Fire Response
Excerpt from ERG Guide 152 [Substances - Toxic (Combustible)]:
ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Cover with plastic sheet to prevent spreading. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS. (ERG, 2024)
ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. Prevent entry into waterways, sewers, basements or confined areas. Cover with plastic sheet to prevent spreading. Absorb or cover with dry earth, sand or other non-combustible material and transfer to containers. DO NOT GET WATER INSIDE CONTAINERS. (ERG, 2024)
Protective Clothing
Wear positive pressure breathing apparatus and special protective clothing. (USCG, 1999)
DuPont Tychem® Suit Fabrics
Tychem® Fabric Legend
QS = Tychem 2000 SFR |
QC = Tychem 2000 |
SL = Tychem 4000 |
C3 = Tychem 5000 |
TF = Tychem 6000 |
TP = Tychem 6000 FR |
RC = Tychem RESPONDER® CSM |
TK = Tychem 10000 |
RF = Tychem 10000 FR |
Testing Details
The fabric permeation data was generated for DuPont by a third party
laboratory. Permeation data for industrial chemicals is obtained per
ASTM F739. Normalized breakthrough times (the time at which the
permeation rate exceeds 0.1 μg/cm2/min) are reported in minutes. All
chemicals have been tested between approximately 20°C and 27°C unless
otherwise stated. All chemicals have been tested at a concentration of
greater than 95% unless otherwise stated.
Chemical warfare agents (Lewisite, Sarin, Soman, Sulfur Mustard, Tabun
and VX Nerve Agent) have been tested at 22°C and 50% relative humidity
per military standard MIL-STD-282. "Breakthrough time" for chemical
warfare agents is defined as the time when the cumulative mass which
permeated through the fabric exceeds the limit in MIL-STD-282 [either
1.25 or 4.0 μg/cm2].
A Caution from DuPont
This information is based upon technical data that DuPont believes to
be reliable on the date issued. It is subject to revision as additional
knowledge and experience are gained. The information reflects
laboratory performance of fabrics, not complete garments, under
controlled conditions. It is intended for informational use by persons
having technical skill for evaluation under their specific end-use
conditions, at their own discretion and risk. It is the user's
responsibility to determine the level of toxicity and the proper
personal protective equipment needed. Anyone intending to use this
information should first verify that the garment selected is suitable
for the intended use. In many cases, seams and closures have shorter
breakthrough times and higher permeation rates than the fabric. If
fabric becomes torn,abraded or punctured, or if seams or closures fail,
or if attached gloves, visors, etc. are damaged, end user should
discontinue use of garment to avoid potential exposure to chemical.
Since conditions of use are outside our control, DuPont makes no
warranties, express or implied, including, without limitation, no
warranties of merchantability or fitness for a particular use and
assume no liability in connection with any use of this information.
This information is not intended as a license to operate under or a
recommendation to infringe any patent, trademark or technical
information of DuPont or others covering any material or its use.
Chemical | CAS Number | State | QS | QC | SL | C3 | TF | TP | RC | TK | RF |
---|---|---|---|---|---|---|---|---|---|---|---|
Diethyl sulfate | 64-67-5 | Liquid | >480 | >480 | >480 | >480 | |||||
Sulfuric acid diethyl ester | 64-67-5 | Liquid | >480 | >480 | >480 | >480 |
> indicates greater than.
Special Warning from DuPont: Tychem® and Tyvek® fabrics should not be used around heat, flames, sparks or in potentially flammable or explosive environments. Only...
...Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T
(with aluminized outer suit) garments are designed and tested to help
reduce burn injury during escape from a flash fire. Users of Tychem®
ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with
aluminized outer suit) garments should not knowingly enter an explosive
environment. Tychem® garments with attached socks must be worn inside
protective outer footwear and are not suitable as outer footwear. These
attached socks do not have adequate durability or slip resistance to be
worn as the outer foot covering.
(DuPont, 2024)
First Aid
INHHALATION: Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen.
EYES OR SKIN: Irrigate with running water for at least 15 min.; hold eyelids open if neccessary. Consult an ophthamologist immediately. Wash skin with soap and water. Speed in removing material from skin is of extreme importance. Remove contaminated clothing and shoes at the site. Keep victim quiet and maintain normal body temperature. Effects may be delayed; keep victim under observation.
INGESTION: If victim is conscious, give victim two glasses of water and have victim induce vomiting. (USCG, 1999)
EYES OR SKIN: Irrigate with running water for at least 15 min.; hold eyelids open if neccessary. Consult an ophthamologist immediately. Wash skin with soap and water. Speed in removing material from skin is of extreme importance. Remove contaminated clothing and shoes at the site. Keep victim quiet and maintain normal body temperature. Effects may be delayed; keep victim under observation.
INGESTION: If victim is conscious, give victim two glasses of water and have victim induce vomiting. (USCG, 1999)
The
Physical Property fields
include properties such as vapor pressure and
boiling point, as well as explosive limits and
toxic exposure thresholds
The information in CAMEO Chemicals comes from a variety of
data sources.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula: |
|
Flash Point:
220°F
(USCG, 1999)
Lower Explosive Limit (LEL):
4.1 %
(USCG, 1999)
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature:
817°F
(USCG, 1999)
Melting Point:
-12°F
(USCG, 1999)
Vapor Pressure: data unavailable
Vapor Density (Relative to Air): data unavailable
Specific Gravity:
1.1803
at 68°F
(USCG, 1999)
- Denser than water; will sink
Boiling Point:
409°F
at 760 mmHg
(USCG, 1999)
Molecular Weight:
154.18
(USCG, 1999)
Water Solubility: data unavailable
Ionization Energy/Potential: data unavailable
IDLH: data unavailable
AEGLs (Acute Exposure Guideline Levels)
No AEGL information available.ERPGs (Emergency Response Planning Guidelines)
No ERPG information available.PACs (Protective Action Criteria)
Chemical | PAC-1 | PAC-2 | PAC-3 |
---|---|---|---|
Diethyl sulfate (64-67-5) | 0.16 ppm | 1.8 ppm | 11 ppm |
(DOE, 2024)
The
Regulatory Information fields
include information from
the U.S. Environmental Protection Agency's Title III Consolidated List of
Lists,
the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility
Anti-Terrorism Standards,
and the U.S. Occupational Safety and Health Administration's
Process Safety Management of Highly Hazardous Chemicals Standard List
(see more about these
data sources).
EPA Consolidated List of Lists
Regulatory Name | CAS Number/ 313 Category Code |
EPCRA 302 EHS TPQ |
EPCRA 304 EHS RQ |
CERCLA RQ | EPCRA 313 TRI |
RCRA Code |
CAA 112(r) RMP TQ |
---|---|---|---|---|---|---|---|
Diethyl sulfate | 64-67-5 | 10 pounds | 313 |
(EPA List of Lists, 2024)
CISA Chemical Facility Anti-Terrorism Standards (CFATS)
No regulatory information available.OSHA Process Safety Management (PSM) Standard List
No regulatory information available.
This section provides a listing of alternate names for this chemical,
including trade names and synonyms.
- DES
- DIETHYL SULFATE
- DIETHYL SULPHATE
- ETHYL SULFATE
- SULFURIC ACID, DIETHYL ESTER
Contact Us | Website Satisfaction Survey
Version 3.1.0 rev 1