1,1-DIFLUOROETHYLENE
The
Chemical Identifier fields
include common identification numbers, the
NFPA diamond
U.S. Department of Transportation hazard labels, and a general
description of the chemical. The information in CAMEO Chemicals comes
from a variety of
data sources.
CAS Number | UN/NA Number |
---|---|
|
|
DOT Hazard Label | USCG CHRIS Code |
|
none |
NIOSH Pocket Guide | International Chem Safety Card |
Vinylidene fluoride |
NFPA 704
Diamond | Hazard | Value | Description | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Health | 1 | Can cause significant irritation. | |||||||||
Flammability | 4 | Burns readily. Rapidly or completely vaporizes at atmospheric pressure and normal ambient temperature. | ||||||||||
Instability | 2 | Readily undergoes violent chemical changes at elevated temperatures and pressures. | ||||||||||
Special |
(NFPA, 2010)
General Description
1,1-Difluoroethylene (or vinylidene fluoride) is a colorless gas which is flammable in the ranges of 5.5 to 21%. It is toxic by inhalation and contact. It is slightly soluble in water and soluble in alcohol and ether. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket.
The
Hazard fields
include
special hazard alerts
air and water
reactions, fire hazards, health hazards, a reactivity profile, and
details about
reactive groups assignments
and
potentially incompatible absorbents.
The information in CAMEO Chemicals comes from a variety of
data sources.
Reactivity Alerts
- Highly Flammable
- Polymerizable
- Peroxidizable Compound
Air & Water Reactions
Highly flammable. Slightly soluble in water.
Fire Hazard
Excerpt from ERG Guide 116 [Gases - Flammable (Unstable); polymerization hazard]:
EXTREMELY FLAMMABLE. Will be easily ignited by heat, sparks or flames. Will form explosive mixtures with air. Acetylene (UN1001, UN3374) may react explosively even in the absence of air. Disilane (UN3553) and Silane (UN2203) will ignite spontaneously in air and may re-ignite. Those substances designated with a (P) may polymerize explosively when heated or involved in a fire. Vapors from liquefied gas are initially heavier than air and spread along ground. Vapors may travel to source of ignition and flash back. Cylinders exposed to fire may vent and release flammable gas through pressure relief devices. Containers may explode when heated. Ruptured cylinders may rocket. (ERG, 2024)
EXTREMELY FLAMMABLE. Will be easily ignited by heat, sparks or flames. Will form explosive mixtures with air. Acetylene (UN1001, UN3374) may react explosively even in the absence of air. Disilane (UN3553) and Silane (UN2203) will ignite spontaneously in air and may re-ignite. Those substances designated with a (P) may polymerize explosively when heated or involved in a fire. Vapors from liquefied gas are initially heavier than air and spread along ground. Vapors may travel to source of ignition and flash back. Cylinders exposed to fire may vent and release flammable gas through pressure relief devices. Containers may explode when heated. Ruptured cylinders may rocket. (ERG, 2024)
Health Hazard
Excerpt from ERG Guide 116 [Gases - Flammable (Unstable); polymerization hazard]:
Vapors may cause dizziness or asphyxiation without warning, especially when in closed or confined areas. Some may be toxic if inhaled at high concentrations. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Fire may produce irritating and/or toxic gases. (ERG, 2024)
Vapors may cause dizziness or asphyxiation without warning, especially when in closed or confined areas. Some may be toxic if inhaled at high concentrations. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Fire may produce irritating and/or toxic gases. (ERG, 2024)
Reactivity Profile
1,1-DIFLUOROETHYLENE is sensitive to heat. This compound is incompatible with oxidizers. It can react violently with hydrogen chloride. Alkyl boron and alkyl hyponitrite compounds initiate polymerization. It will form peroxides on exposure to pure oxygen. (NTP, 1992).
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents
Use caution: Liquids with this reactive group classification have been known to react with the absorbent listed below. More info about absorbents, including situations to watch out for...
- Dirt/Earth
The
Response Recommendation fields
include isolation and evacuation distances, as well as recommendations for
firefighting, non-fire response, protective clothing, and first aid. The
information in CAMEO Chemicals comes from a variety of
data sources.
Isolation and Evacuation
Excerpt from ERG Guide 116 [Gases - Flammable (Unstable); polymerization hazard]:
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 100 meters (330 feet) in all directions.
LARGE SPILL: Consider initial downwind evacuation for at least 800 meters (1/2 mile).
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions. (ERG, 2024)
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 100 meters (330 feet) in all directions.
LARGE SPILL: Consider initial downwind evacuation for at least 800 meters (1/2 mile).
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 1600 meters (1 mile) in all directions; also, consider initial evacuation for 1600 meters (1 mile) in all directions. (ERG, 2024)
Firefighting
Excerpt from ERG Guide 116 [Gases - Flammable (Unstable); polymerization hazard]:
DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.
SMALL FIRE: Dry chemical or CO2.
LARGE FIRE: Water spray or fog. If it can be done safely, move undamaged containers away from the area around the fire.
FIRE INVOLVING TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or safety devices; icing may occur. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
DO NOT EXTINGUISH A LEAKING GAS FIRE UNLESS LEAK CAN BE STOPPED.
SMALL FIRE: Dry chemical or CO2.
LARGE FIRE: Water spray or fog. If it can be done safely, move undamaged containers away from the area around the fire.
FIRE INVOLVING TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Cool containers with flooding quantities of water until well after fire is out. Do not direct water at source of leak or safety devices; icing may occur. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. For massive fire, use unmanned master stream devices or monitor nozzles; if this is impossible, withdraw from area and let fire burn. (ERG, 2024)
Non-Fire Response
Excerpt from ERG Guide 116 [Gases - Flammable (Unstable); polymerization hazard]:
ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. All equipment used when handling the product must be grounded. Stop leak if you can do it without risk. Do not touch or walk through spilled material. Do not direct water at spill or source of leak. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Isolate area until gas has dispersed. (ERG, 2024)
ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. All equipment used when handling the product must be grounded. Stop leak if you can do it without risk. Do not touch or walk through spilled material. Do not direct water at spill or source of leak. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Isolate area until gas has dispersed. (ERG, 2024)
Protective Clothing
Excerpt from NIOSH Pocket Guide for Vinylidene fluoride:
Skin: FROSTBITE - Compressed gases may create low temperatures when they expand rapidly. Leaks and uses that allow rapid expansion may cause a frostbite hazard. Wear appropriate personal protective clothing to prevent the skin from becoming frozen.
Eyes: FROSTBITE - Wear appropriate eye protection to prevent eye contact with the liquid that could result in burns or tissue damage from frostbite.
Wash skin: No recommendation is made specifying the need for washing the substance from the skin (either immediately or at the end of the work shift).
Remove: WHEN WET (FLAMMABLE) - Work clothing that becomes wet should be immediately removed due to its flammability hazard (i.e., for liquids with a flash point <100°F).
Change: No recommendation is made specifying the need for the worker to change clothing after the workshift.
Provide: FROSTBITE WASH - Quick drench facilities and/or eyewash fountains should be provided within the immediate work area for emergency use where there is any possibility of exposure to liquids that are extremely cold or rapidly evaporating. (NIOSH, 2024)
Skin: FROSTBITE - Compressed gases may create low temperatures when they expand rapidly. Leaks and uses that allow rapid expansion may cause a frostbite hazard. Wear appropriate personal protective clothing to prevent the skin from becoming frozen.
Eyes: FROSTBITE - Wear appropriate eye protection to prevent eye contact with the liquid that could result in burns or tissue damage from frostbite.
Wash skin: No recommendation is made specifying the need for washing the substance from the skin (either immediately or at the end of the work shift).
Remove: WHEN WET (FLAMMABLE) - Work clothing that becomes wet should be immediately removed due to its flammability hazard (i.e., for liquids with a flash point <100°F).
Change: No recommendation is made specifying the need for the worker to change clothing after the workshift.
Provide: FROSTBITE WASH - Quick drench facilities and/or eyewash fountains should be provided within the immediate work area for emergency use where there is any possibility of exposure to liquids that are extremely cold or rapidly evaporating. (NIOSH, 2024)
DuPont Tychem® Suit Fabrics
No information available.
First Aid
EYES: First check the victim for contact lenses and remove if present. Flush victim's eyes with water or normal saline solution for 20 to 30 minutes while simultaneously calling a hospital or poison control center. Do not put any ointments, oils, or medication in the victim's eyes without specific instructions from a physician. IMMEDIATELY transport the victim after flushing eyes to a hospital even if no symptoms (such as redness or irritation) develop.
SKIN: CAUTION: Exposure of skin to compressed gases may result in freezing of the skin. Treatment for frostbite may be necessary. Remove the victim from the source of contamination. IMMEDIATELY wash affected areas gently with COLD water (and soap, if necessary) while removing and isolating all contaminated clothing. Dry carefully with clean, soft towels. If symptoms such as inflammation or irritation develop, IMMEDIATELY call a physician or go to a hospital for treatment.
INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. If symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop, call a physician and be prepared to transport the victim to a hospital. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing.
INGESTION: This compound is a gas, therefore inhalation is the first route of exposure. (NTP, 1992)
SKIN: CAUTION: Exposure of skin to compressed gases may result in freezing of the skin. Treatment for frostbite may be necessary. Remove the victim from the source of contamination. IMMEDIATELY wash affected areas gently with COLD water (and soap, if necessary) while removing and isolating all contaminated clothing. Dry carefully with clean, soft towels. If symptoms such as inflammation or irritation develop, IMMEDIATELY call a physician or go to a hospital for treatment.
INHALATION: IMMEDIATELY leave the contaminated area; take deep breaths of fresh air. If symptoms (such as wheezing, coughing, shortness of breath, or burning in the mouth, throat, or chest) develop, call a physician and be prepared to transport the victim to a hospital. Provide proper respiratory protection to rescuers entering an unknown atmosphere. Whenever possible, Self-Contained Breathing Apparatus (SCBA) should be used; if not available, use a level of protection greater than or equal to that advised under Protective Clothing.
INGESTION: This compound is a gas, therefore inhalation is the first route of exposure. (NTP, 1992)
The
Physical Property fields
include properties such as vapor pressure and
boiling point, as well as explosive limits and
toxic exposure thresholds
The information in CAMEO Chemicals comes from a variety of
data sources.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula: |
|
Flash Point: data unavailable
Lower Explosive Limit (LEL):
5.5 %
(NTP, 1992)
Upper Explosive Limit (UEL):
21.3 %
(NTP, 1992)
Autoignition Temperature:
1184°F
(NTP, 1992)
Melting Point:
-227°F
(NTP, 1992)
Vapor Pressure:
21584 mmHg
at 50°F
; 26980 mmHg at 68°F
(NTP, 1992)
Vapor Density (Relative to Air):
2.2
(NTP, 1992)
- Heavier than air; will sink
Specific Gravity:
0.617
at 75°F
(liquid)
(NTP, 1992)
- Less dense than water; will float
Boiling Point:
-123°F
at 760 mmHg
(NTP, 1992)
Molecular Weight:
64.04
(NTP, 1992)
Water Solubility:
0.018 g/100 g
at 77°F and 760 mmHg
(NTP, 1992)
Ionization Energy/Potential:
10.29 eV
(NIOSH, 2024)
IDLH: data unavailable
AEGLs (Acute Exposure Guideline Levels)
No AEGL information available.ERPGs (Emergency Response Planning Guidelines)
No ERPG information available.PACs (Protective Action Criteria)
Chemical | PAC-1 | PAC-2 | PAC-3 | |
---|---|---|---|---|
Vinylidene fluoride; (1,1-Difluoroethene) (75-38-7) | 1500 ppm | 5600 ppm | 11000 ppm | LEL = 55000 ppm |
indicates value is 10-49% of LEL.
(DOE, 2024)
The
Regulatory Information fields
include information from
the U.S. Environmental Protection Agency's Title III Consolidated List of
Lists,
the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility
Anti-Terrorism Standards,
and the U.S. Occupational Safety and Health Administration's
Process Safety Management of Highly Hazardous Chemicals Standard List
(see more about these
data sources).
EPA Consolidated List of Lists
Regulatory Name | CAS Number/ 313 Category Code |
EPCRA 302 EHS TPQ |
EPCRA 304 EHS RQ |
CERCLA RQ | EPCRA 313 TRI |
RCRA Code |
CAA 112(r) RMP TQ |
---|---|---|---|---|---|---|---|
Ethene, 1,1-difluoro- | 75-38-7 | 10000 pounds | |||||
Vinylidene fluoride | 75-38-7 | 10000 pounds |
(EPA List of Lists, 2024)
CISA Chemical Facility Anti-Terrorism Standards (CFATS)
RELEASE | THEFT | SABOTAGE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chemical of Interest | CAS Number | Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Vinylidene fluoride; [Ethene, 1,1-difluoro-] | 75-38-7 | 1.00 % | 10000 pounds | flammable |
(CISA, 2007)
OSHA Process Safety Management (PSM) Standard List
No regulatory information available.
This section provides a listing of alternate names for this chemical,
including trade names and synonyms.
- CA 16
- DIFLUORO-1,1-ETHYLENE
- 1,1-DIFLUOROETHENE
- 1,1-DIFLUOROETHYLENE
- ETHYLENE, 1,1-DIFLUORO-
- GENETRON 1132A
- HALOCARBON 1132A
- HFC 1132A
- NCI-C60203
- R 1132A
- REFRIGERANT GAS R-1132A
- VDF
- VINYLIDENE DIFLUORIDE
- VINYLIDENE FLUORIDE
Contact Us | Website Satisfaction Survey
Version 3.1.0 rev 1