NITROGEN TETROXIDE
The
Chemical Identifier fields
include common identification numbers, the
NFPA diamond
U.S. Department of Transportation hazard labels, and a general
description of the chemical. The information in CAMEO Chemicals comes
from a variety of
data sources.
CAS Number | UN/NA Number |
---|---|
|
|
DOT Hazard Label | USCG CHRIS Code |
|
|
NIOSH Pocket Guide | International Chem Safety Card |
none | none |
NFPA 704
Diamond | Hazard | Value | Description | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Health | 3 | Can cause serious or permanent injury. | |||||||||
Flammability | 0 | Will not burn under typical fire conditions. | ||||||||||
Instability | 0 | Normally stable, even under fire conditions. | ||||||||||
Special | OX | Possesses oxidizing properties. |
(NFPA, 2010)
General Description
Red-brown liquid with a sharp, unpleasant chemical odor. Low-boiling (boiling point 21.15°C) and held as a liquid by compression. Density 1.448 g / cm3. Consists of an equilibrium mixture of brown NO2 (nitrogen dioxide) and colorless N2O4 (dinitrogen tetroxide). Evolves poisonous brown vapors. Cylinders and ton containers may not be equipped with a safety relief device. Prolonged exposure of the containers to fire or heat may result in their violent rupturing and rocketing.
The
Hazard fields
include
special hazard alerts
air and water
reactions, fire hazards, health hazards, a reactivity profile, and
details about
reactive groups assignments
and
potentially incompatible absorbents.
The information in CAMEO Chemicals comes from a variety of
data sources.
Reactivity Alerts
- Strong Oxidizing Agent
- Water-Reactive
- Air-Reactive
Air & Water Reactions
Reacts with water to form nitric acid and nitric oxide.
Fire Hazard
Special Hazards of Combustion Products: Produces toxic gas when heated.
Behavior in Fire: Does not burn, but supports combustion of combustible materials such as wood. May cause fire or explode on contact with other materials. (USCG, 1999)
Behavior in Fire: Does not burn, but supports combustion of combustible materials such as wood. May cause fire or explode on contact with other materials. (USCG, 1999)
Health Hazard
Very concentrated fumes produce coughing, choking, headache, nausea, pain in chest and abdomen; otherwise, few symtoms appear at time of exposure. After symptom-free period of 5-72 hours, pulmonary edema gradually develops, causing fatigue, restlessness, coughing, difficulty in breathing, frothy expectoration, mental confusion, lethargy, bluish skin, and weak, rapid pulse. Since NOX interferes with gas exchange in lungs, unconscious- ness and death by asphyxiation can result, usually within a few hours after onset of pulmonary edema. (USCG, 1999)
Reactivity Profile
Liquid NITROGEN TETROXIDE is an oxidizing agent consisting of an equilibrium mixture of colorless dinitrogen tetraoxide (N2O4) and red-brown nitrogen dioxide (NO2). The exact composition of the mixture depends on the temperature with higher temperature favoring conversion to NO2. Vaporizes readily to give NO2, also an oxidizing agent. Noncombustible but can accelerate the burning of combustible materials. Reacts with reducing agents to generate heat and products that may be gaseous (causing pressurization of closed containers). The products may themselves be capable of further reactions (such as combustion in the air). Reacts with alkalis to form nitrates and nitrites [Merck 11th ed. 1989]. Corrodes steel if wet, but can be stored in steel cylinders if dry [Merck]. Reacts explosively with liquid ammonia even at very low temperatures (below its freezing point) [Mellor, 1940, Vol. 8, 54]. Reacts energetically with boron trichloride [Mellor, 1946, Vol. 5, 132]. Mixtures with metal carbonyls are hypergolic (enflame immediately). Mixtures with halocarbons, hydrazine derivatives, heterocyclic bases (pyridine), isopropyl nitrite/propyl nitrite, active metals (magnesium, calcium, etc.), nitroaromatics, nitrogen trichloride, phosphorus, triethylamine, unsaturated hydrocarbons may react explosively. Accidental mixing with hot cyclohexane caused an explosion [MCA Case History 128. 1962]. A mixture with acetonitrile and indium showed no evidence of change for a time and then detonated when shaken (ascribed to the catalyzed oxidation of acetonitrile) [Chem. & Ind., 1958, 1004]. Mixture with alcohols produced a violent explosion [Chem. Eng. News, 1955, 33, 2372]. Vapor reacts with barium oxide incandescently [Mellor, 1940, Vol. 8, 545]. A slow reaction between the vapor and formaldehyde became explosive near 180°C [Trans. Faraday Soc. 45:767-770. 1949]. Manganese and potassium both ignite in the vapor [Ann. Chem. et Phys.(2) 2:317]. The vapor and ozone react with the evolution of light and often explode when mixed [J. Chem. Phys. 18:366. 1920].
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents
Use caution: Liquids with this reactive group classification have been known to react with the absorbents listed below. More info about absorbents, including situations to watch out for...
- Cellulose-Based Absorbents
- Expanded Polymeric Absorbents
The
Response Recommendation fields
include isolation and evacuation distances, as well as recommendations for
firefighting, non-fire response, protective clothing, and first aid. The
information in CAMEO Chemicals comes from a variety of
data sources.
Isolation and Evacuation
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 100 meters (330 feet) in all directions.
SPILL: See ERG Table 1 - Initial Isolation and Protective Action Distances on the UN/NA 1067 datasheet.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area for at least 100 meters (330 feet) in all directions.
SPILL: See ERG Table 1 - Initial Isolation and Protective Action Distances on the UN/NA 1067 datasheet.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
Firefighting
Fire Extinguishing Agents: Stop flow of gas (USCG, 1999)
Non-Fire Response
Excerpt from ERG Guide 124 [Gases - Toxic and/or Corrosive - Oxidizing]:
Do not touch or walk through spilled material. Keep combustibles (wood, paper, oil, etc.) away from spilled material. Stop leak if you can do it without risk. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Do not direct water at spill or source of leak. If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Isolate area until gas has dispersed. Ventilate the area. (ERG, 2024)
Do not touch or walk through spilled material. Keep combustibles (wood, paper, oil, etc.) away from spilled material. Stop leak if you can do it without risk. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Do not direct water at spill or source of leak. If possible, turn leaking containers so that gas escapes rather than liquid. Prevent entry into waterways, sewers, basements or confined areas. Isolate area until gas has dispersed. Ventilate the area. (ERG, 2024)
Protective Clothing
Rubber gloves; safety goggles and face shield; protective clothing; acid gas canister respirator or self-contained breathing apparatus. (USCG, 1999)
DuPont Tychem® Suit Fabrics
Tychem® Fabric Legend
QS = Tychem 2000 SFR |
QC = Tychem 2000 |
SL = Tychem 4000 |
C3 = Tychem 5000 |
TF = Tychem 6000 |
TP = Tychem 6000 FR |
RC = Tychem RESPONDER® CSM |
TK = Tychem 10000 |
RF = Tychem 10000 FR |
Testing Details
The fabric permeation data was generated for DuPont by a third party
laboratory. Permeation data for industrial chemicals is obtained per
ASTM F739. Normalized breakthrough times (the time at which the
permeation rate exceeds 0.1 μg/cm2/min) are reported in minutes. All
chemicals have been tested between approximately 20°C and 27°C unless
otherwise stated. All chemicals have been tested at a concentration of
greater than 95% unless otherwise stated.
Chemical warfare agents (Lewisite, Sarin, Soman, Sulfur Mustard, Tabun
and VX Nerve Agent) have been tested at 22°C and 50% relative humidity
per military standard MIL-STD-282. "Breakthrough time" for chemical
warfare agents is defined as the time when the cumulative mass which
permeated through the fabric exceeds the limit in MIL-STD-282 [either
1.25 or 4.0 μg/cm2].
A Caution from DuPont
This information is based upon technical data that DuPont believes to
be reliable on the date issued. It is subject to revision as additional
knowledge and experience are gained. The information reflects
laboratory performance of fabrics, not complete garments, under
controlled conditions. It is intended for informational use by persons
having technical skill for evaluation under their specific end-use
conditions, at their own discretion and risk. It is the user's
responsibility to determine the level of toxicity and the proper
personal protective equipment needed. Anyone intending to use this
information should first verify that the garment selected is suitable
for the intended use. In many cases, seams and closures have shorter
breakthrough times and higher permeation rates than the fabric. If
fabric becomes torn,abraded or punctured, or if seams or closures fail,
or if attached gloves, visors, etc. are damaged, end user should
discontinue use of garment to avoid potential exposure to chemical.
Since conditions of use are outside our control, DuPont makes no
warranties, express or implied, including, without limitation, no
warranties of merchantability or fitness for a particular use and
assume no liability in connection with any use of this information.
This information is not intended as a license to operate under or a
recommendation to infringe any patent, trademark or technical
information of DuPont or others covering any material or its use.
Chemical | CAS Number | State | QS | QC | SL | C3 | TF | TP | RC | TK | RF |
---|---|---|---|---|---|---|---|---|---|---|---|
Nitrogen tetroxide | 10544-72-6 | Liquid | >480 | >480 | >480 | ||||||
Nitrogen tetroxide (21°C, liquid) | 10544-72-6 | Liquid | 450 | ||||||||
Nitrogen tetroxide (gaseous) | 10544-72-6 | Vapor | 90 | 90 | 90 |
> indicates greater than.
Special Warning from DuPont: Tychem® and Tyvek® fabrics should not be used around heat, flames, sparks or in potentially flammable or explosive environments. Only...
...Tychem® ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T
(with aluminized outer suit) garments are designed and tested to help
reduce burn injury during escape from a flash fire. Users of Tychem®
ThermoPro, Tychem® Reflector® and Tychem® TK styles 600T/601T (with
aluminized outer suit) garments should not knowingly enter an explosive
environment. Tychem® garments with attached socks must be worn inside
protective outer footwear and are not suitable as outer footwear. These
attached socks do not have adequate durability or slip resistance to be
worn as the outer foot covering.
(DuPont, 2024)
First Aid
INHALATION: remove patient to fresh air and have him breathe as deeply as possible; call a doctor; enforce complete rest for 24-48 hours; keep warm; give oxygen if coughing starts; physician may administer morphine (10 mg.)
EYES AND
SKIN: flush with water for at least 15 min. (USCG, 1999)
EYES AND
SKIN: flush with water for at least 15 min. (USCG, 1999)
The
Physical Property fields
include properties such as vapor pressure and
boiling point, as well as explosive limits and
toxic exposure thresholds
The information in CAMEO Chemicals comes from a variety of
data sources.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula: |
|
Flash Point: data unavailable
Lower Explosive Limit (LEL): data unavailable
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature:
Not flammable
(USCG, 1999)
Melting Point:
11.8°F
(USCG, 1999)
Vapor Pressure:
1551 mmHg
(USCG, 1999)
Vapor Density (Relative to Air): data unavailable
Specific Gravity:
1.45
at 68°F
(USCG, 1999)
- Denser than water; will sink
Boiling Point:
70.1°F
at 760 mmHg
(USCG, 1999)
Molecular Weight:
92.02
(USCG, 1999)
Water Solubility: data unavailable
Ionization Energy/Potential: data unavailable
IDLH: data unavailable
AEGLs (Acute Exposure Guideline Levels)
Exposure Period | AEGL-1 | AEGL-2 | AEGL-3 |
---|---|---|---|
10 minutes | 0.25 ppm | 10 ppm | 17 ppm |
30 minutes | 0.25 ppm | 7.6 ppm | 13 ppm |
60 minutes | 0.25 ppm | 6.2 ppm | 10 ppm |
4 hours | 0.25 ppm | 4.1 ppm | 7 ppm |
8 hours | 0.25 ppm | 3.5 ppm | 5.7 ppm |
(NAC/NRC, 2024)
ERPGs (Emergency Response Planning Guidelines)
No ERPG information available.PACs (Protective Action Criteria)
Chemical | PAC-1 | PAC-2 | PAC-3 |
---|---|---|---|
Nitrogen tetroxide (10544-72-6) | 0.25 ppm | 6.2 ppm | 10 ppm |
(DOE, 2024)
The
Regulatory Information fields
include information from
the U.S. Environmental Protection Agency's Title III Consolidated List of
Lists,
the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility
Anti-Terrorism Standards,
and the U.S. Occupational Safety and Health Administration's
Process Safety Management of Highly Hazardous Chemicals Standard List
(see more about these
data sources).
EPA Consolidated List of Lists
Regulatory Name | CAS Number/ 313 Category Code |
EPCRA 302 EHS TPQ |
EPCRA 304 EHS RQ |
CERCLA RQ | EPCRA 313 TRI |
RCRA Code |
CAA 112(r) RMP TQ |
---|---|---|---|---|---|---|---|
Nitrogen dioxide | 10544-72-6 | 10 pounds @ |
- @ indicates that releases in amounts less than 1000 pounds per 24 hours of nitrogen oxide or nitrogen dioxide to the air that are the result of combustion and combustion related activities are exempt from the notification requirements of EPCRA section 304 and CERCLA.
(EPA List of Lists, 2024)
CISA Chemical Facility Anti-Terrorism Standards (CFATS)
RELEASE | THEFT | SABOTAGE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chemical of Interest | CAS Number | Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Dinitrogen tetroxide | 10544-72-6 | 3.80 % | 15 pounds | WME |
- WME = weapons of mass effect.
(CISA, 2007)
OSHA Process Safety Management (PSM) Standard List
Chemical Name | CAS Number | Threshold Quantity (TQ) |
---|---|---|
Nitrogen Tetroxide (also called Nitrogen Peroxide) | 10544-72-6 | 250 pounds |
(OSHA, 2019)
This section provides a listing of alternate names for this chemical,
including trade names and synonyms.
- DINITROGEN TETRAOXIDE
- DINITROGEN TETROXIDE
- NITROGEN DIOXIDE/DINITROGEN TETROXIDE MIXTURE
- NITROGEN TETRAOXIDE
- NITROGEN TETROXIDE
- NITROGEN TETROXIDE, [LIQUID]
- OXIDES OF NITROGEN
- RED OXIDE OF NITROGEN
Contact Us | Website Satisfaction Survey
Version 3.1.0 rev 1