DIPHENYLDICHLOROSILANE
The
Chemical Identifier fields
include common identification numbers, the
NFPA diamond
U.S. Department of Transportation hazard labels, and a general
description of the chemical. The information in CAMEO Chemicals comes
from a variety of
data sources.
CAS Number | UN/NA Number |
---|---|
|
|
DOT Hazard Label | USCG CHRIS Code |
|
|
NIOSH Pocket Guide | International Chem Safety Card |
none | none |
NFPA 704
Diamond | Hazard | Value | Description | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Health | 3 | Can cause serious or permanent injury. | |||||||||
Flammability | 1 | Must be preheated before ignition can occur. | ||||||||||
Instability | 2 | Readily undergoes violent chemical changes at elevated temperatures and pressures. | ||||||||||
Special | Reacts violently or explosively with water. |
(NFPA, 2010)
General Description
Diphenyldichlorosilane is a colorless liquid with a pungent odor. It will burn though it may require some effort to ignite. It is decomposed by water to hydrochloric acid with evolution of heat. It is corrosive to metals and tissue.
The
Hazard fields
include
special hazard alerts
air and water
reactions, fire hazards, health hazards, a reactivity profile, and
details about
reactive groups assignments
and
potentially incompatible absorbents.
The information in CAMEO Chemicals comes from a variety of
data sources.
Reactivity Alerts
- Water-Reactive
Air & Water Reactions
Based on the properties of similar materials, there is the possibility that the reaction of this compound with water may be vigorous or violent. Products of the reaction include hydrogen chloride. The reaction generates heat and this heat may be sufficient to ignite the product.
Diphenyldichlorosilane reacts vigorously with water to generate gaseous HCl. Based on a scenario where the chemical is spilled into an excess of water (at least 5 fold excess of water), half of the maximum theoretical yield of Hydrogen Chloride gas will be created in 5.3 minutes. After mixing particular chemicals into water, there may be a delay of 1-10 minutes before gas generation may be observed. For this chemical, a 60 second induction time was observed. Experimental details are in the following: "Development of the Table of Initial Isolation and Protective Distances for the 2008 Emergency Response Guidebook", ANL/DIS-09-2, D.F. Brown, H.M. Hartmann, W.A. Freeman, and W.D. Haney, Argonne National Laboratory, Argonne, Illinois, June 2009.
Diphenyldichlorosilane reacts vigorously with water to generate gaseous HCl. Based on a scenario where the chemical is spilled into an excess of water (at least 5 fold excess of water), half of the maximum theoretical yield of Hydrogen Chloride gas will be created in 5.3 minutes. After mixing particular chemicals into water, there may be a delay of 1-10 minutes before gas generation may be observed. For this chemical, a 60 second induction time was observed. Experimental details are in the following: "Development of the Table of Initial Isolation and Protective Distances for the 2008 Emergency Response Guidebook", ANL/DIS-09-2, D.F. Brown, H.M. Hartmann, W.A. Freeman, and W.D. Haney, Argonne National Laboratory, Argonne, Illinois, June 2009.
Fire Hazard
Special Hazards of Combustion Products: Hydrochloric acid and phosgene fumes may be formed.
Behavior in Fire: Difficult to extinguish; re-ignition may occur. Contact with water or foam applied to adjacent fires will produce irritating hydrogen chloride fumes. (USCG, 1999)
Behavior in Fire: Difficult to extinguish; re-ignition may occur. Contact with water or foam applied to adjacent fires will produce irritating hydrogen chloride fumes. (USCG, 1999)
Health Hazard
Inhalation irritates mucous membranes. Contact with liquid causes severe burns of eyes and skin. Ingestion causes severe burns of mouth and stomach. (USCG, 1999)
Reactivity Profile
Chlorosilanes, such as DIPHENYLDICHLOROSILANE, are compounds in which silicon is bonded to from one to four chlorine atoms with other bonds to hydrogen and/or alkyl groups. Chlorosilanes react with water, moist air, or steam to produce heat and toxic, corrosive fumes of hydrogen chloride. They may also produce flammable gaseous H2. They can serve as chlorination agents. Chlorosilanes react vigorously with both organic and inorganic acids and with bases to generate toxic or flammable gases.
Belongs to the Following Reactive Group(s)
Potentially Incompatible Absorbents
Use caution: Liquids with this reactive group classification have been known to react with the absorbents listed below. More info about absorbents, including situations to watch out for...
- Cellulose-Based Absorbents
- Mineral-Based & Clay-Based Absorbents
- Dirt/Earth
The
Response Recommendation fields
include isolation and evacuation distances, as well as recommendations for
firefighting, non-fire response, protective clothing, and first aid. The
information in CAMEO Chemicals comes from a variety of
data sources.
Isolation and Evacuation
Excerpt from ERG Guide 156 [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.
SPILL: See ERG Table 1 - Initial Isolation and Protective Action Distances on the UN/NA 1769 datasheet.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
IMMEDIATE PRECAUTIONARY MEASURE: Isolate spill or leak area in all directions for at least 50 meters (150 feet) for liquids and at least 25 meters (75 feet) for solids.
SPILL: See ERG Table 1 - Initial Isolation and Protective Action Distances on the UN/NA 1769 datasheet.
FIRE: If tank, rail tank car or highway tank is involved in a fire, ISOLATE for 800 meters (1/2 mile) in all directions; also, consider initial evacuation for 800 meters (1/2 mile) in all directions. (ERG, 2024)
Firefighting
Excerpt from ERG Guide 156 [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:
Note: Most foams will react with the material and release corrosive/toxic gases. CAUTION: For Acetyl bromide (UN1716), use CO2 or dry chemical only.
SMALL FIRE: CO2, dry chemical, dry sand, alcohol-resistant foam.
LARGE FIRE: Water spray, fog or alcohol-resistant foam. FOR CHLOROSILANES, DO NOT USE WATER; use alcohol-resistant foam. If it can be done safely, move undamaged containers away from the area around the fire. Avoid aiming straight or solid streams directly onto the product.
FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. (ERG, 2024)
Note: Most foams will react with the material and release corrosive/toxic gases. CAUTION: For Acetyl bromide (UN1716), use CO2 or dry chemical only.
SMALL FIRE: CO2, dry chemical, dry sand, alcohol-resistant foam.
LARGE FIRE: Water spray, fog or alcohol-resistant foam. FOR CHLOROSILANES, DO NOT USE WATER; use alcohol-resistant foam. If it can be done safely, move undamaged containers away from the area around the fire. Avoid aiming straight or solid streams directly onto the product.
FIRE INVOLVING TANKS, RAIL TANK CARS OR HIGHWAY TANKS: Fight fire from maximum distance or use unmanned master stream devices or monitor nozzles. Do not get water inside containers. Cool containers with flooding quantities of water until well after fire is out. Withdraw immediately in case of rising sound from venting safety devices or discoloration of tank. ALWAYS stay away from tanks in direct contact with flames. (ERG, 2024)
Non-Fire Response
Excerpt from ERG Guide 156 [Substances - Toxic and/or Corrosive (Combustible / Water-Sensitive)]:
ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. All equipment used when handling the product must be grounded. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. A vapor-suppressing foam may be used to reduce vapors. FOR CHLOROSILANES, use alcohol-resistant foam to reduce vapors. DO NOT GET WATER on spilled substance or inside containers. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Prevent entry into waterways, sewers, basements or confined areas.
SMALL SPILL: Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain. Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal. (ERG, 2024)
ELIMINATE all ignition sources (no smoking, flares, sparks or flames) from immediate area. All equipment used when handling the product must be grounded. Do not touch damaged containers or spilled material unless wearing appropriate protective clothing. Stop leak if you can do it without risk. A vapor-suppressing foam may be used to reduce vapors. FOR CHLOROSILANES, use alcohol-resistant foam to reduce vapors. DO NOT GET WATER on spilled substance or inside containers. Use water spray to reduce vapors or divert vapor cloud drift. Avoid allowing water runoff to contact spilled material. Prevent entry into waterways, sewers, basements or confined areas.
SMALL SPILL: Cover with DRY earth, DRY sand or other non-combustible material followed with plastic sheet to minimize spreading or contact with rain. Use clean, non-sparking tools to collect material and place it into loosely covered plastic containers for later disposal. (ERG, 2024)
Protective Clothing
Acid-vapor-type respiratory protection; rubber gloves; chemical worker's goggles; other protective equipment as necessary to protect skin and eyes. (USCG, 1999)
DuPont Tychem® Suit Fabrics
No information available.
First Aid
INHALATION: remove victim from exposure; support respiration; call physician if needed.
EYES: flush with water for 15 min.; obtain medical attention immediately.
SKIN: flush with water; obtain medical attention for acid burns.
INGESTION: give large amounts of water, if victim is conscious; give milk, or milk of magnesia; call physician. (USCG, 1999)
EYES: flush with water for 15 min.; obtain medical attention immediately.
SKIN: flush with water; obtain medical attention for acid burns.
INGESTION: give large amounts of water, if victim is conscious; give milk, or milk of magnesia; call physician. (USCG, 1999)
The
Physical Property fields
include properties such as vapor pressure and
boiling point, as well as explosive limits and
toxic exposure thresholds
The information in CAMEO Chemicals comes from a variety of
data sources.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Note: For Vapor Density and Specific Gravity, comparing the value to 1.0 can tell you if the chemical will likely sink/rise in air or sink/float in fresh water (respectively). Short phrases have been added to those values below as an aid. However, make sure to also consider the circumstances of a release. The Vapor Density comparisons are only valid when the gas escaping is at the same temperature as the surrounding air itself. If the chemical is escaping from a container where it was pressurized or refrigerated, it may first escape and behave as a heavy gas and sink in the air (even if it has a Vapor Density value less than 1). Also, the Specific Gravity comparisons are for fresh water (density 1.0 g/mL). If your spill is in salt water (density about 1.027 g/mL), you need to adjust the point of comparison. There are some chemicals that will sink in fresh water and float in salt water.
Chemical Formula: |
|
Flash Point:
288°F
(USCG, 1999)
Lower Explosive Limit (LEL): data unavailable
Upper Explosive Limit (UEL): data unavailable
Autoignition Temperature: data unavailable
Melting Point: data unavailable
Vapor Pressure: data unavailable
Vapor Density (Relative to Air): data unavailable
Specific Gravity:
1.22
at 77°F
(USCG, 1999)
- Denser than water; will sink
Boiling Point:
579°F
at 760 mmHg
(USCG, 1999)
Molecular Weight:
253
(USCG, 1999)
Water Solubility: data unavailable
Ionization Energy/Potential: data unavailable
IDLH: data unavailable
AEGLs (Acute Exposure Guideline Levels)
Exposure Period | AEGL-1 | AEGL-2 | AEGL-3 |
---|---|---|---|
10 minutes | 0.9 ppm | 50 ppm | 310 ppm |
30 minutes | 0.9 ppm | 22 ppm | 110 ppm |
60 minutes | 0.9 ppm | 11 ppm | 50 ppm |
4 hours | 0.9 ppm | 5.5 ppm | 13 ppm |
8 hours | 0.9 ppm | 5.5 ppm | 13 ppm |
(NAC/NRC, 2024)
ERPGs (Emergency Response Planning Guidelines)
No ERPG information available.PACs (Protective Action Criteria)
Chemical | PAC-1 | PAC-2 | PAC-3 |
---|---|---|---|
Diphenyldichlorosilane (80-10-4) | 0.9 ppm | 11 ppm | 50 ppm |
(DOE, 2024)
The
Regulatory Information fields
include information from
the U.S. Environmental Protection Agency's Title III Consolidated List of
Lists,
the U.S. Cybersecurity and Infrastructure Security Agency's Chemical Facility
Anti-Terrorism Standards,
and the U.S. Occupational Safety and Health Administration's
Process Safety Management of Highly Hazardous Chemicals Standard List
(see more about these
data sources).
EPA Consolidated List of Lists
No regulatory information available.CISA Chemical Facility Anti-Terrorism Standards (CFATS)
RELEASE | THEFT | SABOTAGE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chemical of Interest | CAS Number | Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Min Conc | STQ | Security Issue |
Diphenyldichlorosilane | 80-10-4 | ACG | APA | sabotage/ contamination |
- ACG = a commercial grade.
- APA = a placarded amount.
(CISA, 2007)
OSHA Process Safety Management (PSM) Standard List
No regulatory information available.
This section provides a listing of alternate names for this chemical,
including trade names and synonyms.
- DICHLORODIPHENYLSILANE
- DICHLORODIPHENYLSILICANE
- DIPHENYL DICHLOROSILANE
- DIPHENYLDICHLOROSILANE
- DIPHENYLSILICON DICHLORIDE
- DIPHENYLSILYL DICHLORIDE
- TSL 8062
Contact Us | Website Satisfaction Survey
Version 3.1.0 rev 1